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Stationary and time-dependent solutions of a nonlinear Kramers equation, as well as its associated nonlinear
Fokker-Planck equations, are investigated within the context of Tsallis nonextensive statistical mechanics. Since
no general analytical time-dependent solutions are found for such a nonlinear Kramers equation, an ansatz
is considered and the corresponding asymptotic behavior is studied and compared with those known for the
standard linear Kramers equation. The H-theorem is analyzed for this equation and its connection with Tsallis
entropy is investigated. An application is discussed, namely the motion of Hydra cells in two-dimensional cellular
aggregates, for which previous measurements have verified q-Gaussian distributions for velocity components
and superdiffusion. The present analysis is in quantitative agreement with these experimental results.
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I. INTRODUCTION

Recent attempts for an appropriate description of several
complex systems demanded the introduction of a wide variety
of nonlinear (NL) equations [1,2]. As an immediate conse-
quence, difficulties appeared in finding exact solutions, so
approximative analytical methods and numerical procedures
have been used. In these later cases, many researches benefitted
from advances in computer technology, leading to considerable
progresses in several areas of physics, so problems that
have remained intractable for decades are now being dealt
numerically. Among many, one could mention some areas
where these types of equations occur frequently, like nonlinear
optics, superconductivity, plasma physics, and nonequilibrium
statistical mechanics.

Very frequently, NL equations are proposed as general-
izations of linear ones, so these are recovered as particular
cases. Among many possible ways, such generalizations were
carried in the literature mostly in two different procedures:
(i) the addition of new NL terms to a linear equation and
(ii) the modification of exponents of existing linear terms.
This second procedure has been much used within the theory
of nonextensive statistical mechanics [3–6], which emerged
from the generalization of the Boltzmann-Gibbs entropy, by
introducing a real index q, such as to recover the former in the
limit q → 1 [3]. Similarly, a power (2 − q) in the probability
of the diffusion term leads to a NL Fokker-Planck equation
(NLFPE) [7,8] capable of explaining interesting physical
phenomena related to anomalous diffusion [9] (for which
q �= 1). Additionally, linear inhomogeneous Fokker-Planck
equations were proposed as well, and some were associated
to nonextensive statistical mechanics [10]. Since then, a wide
variety of NLFPEs were investigated in the literature [11],
motivated by a description of several physical phenomena
related to anomalous diffusion in multiple dimensions and
anisotropic media [12–16].

*Corresponding author: fdnobre@cbpf.br

The H-theorem represents one of the most important results
of nonequilibrium statistical mechanics, guaranteeing that a
system will approach an equilibrium state after a long-time
evolution. One possible proof of this theorem can be carried by
using a Fokker-Planck equation and introducing an associated
entropic form, appropriated for the physical system under
investigation. According to this, the linear Fokker-Planck
equation is usually related to the Boltzmann-Gibbs entropy
either by means of the H-theorem or by comparing its solution
with the distribution that comes from an entropy maximization
procedure [17–19]. In a similar manner, generalized forms of
the H-theorem have been worked out recently in such a way
to relate NLFPEs with other entropic forms [11,20–37].

The Kramers equation may be considered a type of Fokker-
Planck equation describing the time evolution of a joint
probability distribution P (�x,�v,t) for both positions ({�xi}) and
velocities ({�vi}) of a system of particles (see, e.g., Refs. [19,38]
for a discussion of the linear Kramers equation). In the linear
case, by integrating over velocities one obtains as a first
approximation the standard Fokker-Planck equation, where the
distribution P (�x,t) appears as a marginal probability. Although
nonlinear forms of the Kramers equation have been proposed
in the literature [11,29,39], they have not yet been explored
in detail; essentially, only their stationary-state solutions were
studied.

In this work we investigate a nonlinear Kramers equation
(NLKE) associated with nonextensive statistical mechanics.
Apart from the stationary state, time-dependent solutions are
also analyzed. For completeness, in the next section we present
a short review of the linear Kramers equation, showing how it
is related with Langevin equations, and discuss its solutions.
In Sec. III we introduce the NLKE to be studied, as well as its
associated Langevin equations. The stationary-state solutions
are found, an ansatz for the time-dependent solutions is
presented, and a discussion about H-theorems is performed as
well. In Sec. IV we discuss an application, namely a biological
system, composed by single Hydra cells, which move in
a two-dimensional space [40,41]. The velocity distributions
of the centers of mass of these cells have been measured
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previously and shown to follow q-Gaussian distributions [41],
thus representing a suitable system for being analyzed within
the present approach; moreover, anomalous diffusion was also
identified in Ref. [40]. We show that the reduced velocity
distribution and the anomalous diffusion can be related to a
time-dependent solution of the present NLKE. We verified
a quantitative agreement between this approach and the
experimental estimates. Finally, in Sec. V we present our
conclusions.

II. LINEAR KRAMERS EQUATION

Let us consider a given system described by a set of n

variables, �x(t) ≡ [x1(t),x2(t), . . . ,xn(t)], following Langevin
equations,

dxi

dt
= fi + ηi,

(2.1)〈ηi(t)〉 = 0, 〈ηi(t)ηi(t
′)〉 = �ij δ(t − t ′),

where {fi(�x,t)} are general functions and {ηi(t)} (i =
1,2, · · · ,n) are stochastic variables, corresponding to an
additive white noise. From Eqs. (2.1) one may obtain a
Fokker-Planck equation for a probability density P (�x,t) at
time t [18,19,38],

∂P (�x,t)

∂t
= 1

2

n∑
i,j=1

�ij

∂2P (�x,t)

∂xi∂xj

−
n∑

i=1

∂

∂xi

[fiP (�x,t)], (2.2)

where the matrix elements {�ij } correspond to diffusion
coefficients, covering the most general anisotropic situation.

Herein we focus attention on a particle with mass m, in a
one-dimensional space, subjected to an external force Fx , a
drag force −αv (α > 0), as well as a random force η(t). The
associated set of Langevin equations is given by

m
dv

dt
= −αv + Fx + η,

(2.3)
dx

dt
= v,

where 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = �δ(t − t ′). Comparing
Eqs. (2.1) and (2.3) one sees that in the above case n = 2,
corresponding to the set of variables �x(t) ≡ (x,v), where the
random force in the second equation is null; moreover, we can
identify �xx = �xv = �vx = 0 and �vv = �/m2. The associ-
ated Fokker-Planck equation for P (x,v,t), usually referred to
as Kramers equation, becomes

∂P (x,v,t)

∂t
= �

2m2

∂2P (x,v,t)

∂v2

− ∂

∂v

[(
−αv

m
+ Fx

m

)
P (x,v,t)

]

− ∂

∂x
[vP (x,v,t)]. (2.4)

One should notice that Eq. (2.4), for the joint probability
distribution P (x,v,t), differs from a standard two-dimensional
Fokker-Planck equation, since the x and v variables are not
symmetric.

Below we discuss two particular cases that arise from the
Langevin equations in Eq. (2.3). First, when mdv/dt 	 αv,

one may neglect the contribution mdv/dt , such as to obtain
the overdamped regime,

dx

dt
= Fx

α
+ η

α
, (2.5)

that leads to

∂P (x,t)

∂t
= �

2α2

∂2P (x,t)

∂x2
− ∂

∂x

[
Fx

α
P (x,t)

]
. (2.6)

Identifying D = �/(2α2) and f = Fx/α, one recovers the
usual linear Fokker-Planck equation for P (x,t) [18,19,38].
Another particular case occurs when Fx = 0, for which

dv

dt
= − α

m
v + η

m
. (2.7)

A procedure similar to the one used to obtain Eq. (2.6)
yields in the present case

∂P (v,t)

∂t
= �

2m2

∂2P (v,t)

∂v2
− ∂

∂v

[
−αv

m
P (v,t)

]
, (2.8)

which corresponds to a reduced Fokker-Planck for the
marginal probability distribution P (v,t), associated with the
velocities. Indeed, since one has no position dependence in
the velocity equation, it is possible to integrate Eq. (2.4) over
x to obtain Eq. (2.8). On the other hand, an integration of
Eq. (2.4) over v after an approximation (i.e., considering an
overdamped regime) leads to Eq. (2.6). In what follows, we re-
view briefly the solutions of the Kramers equation in Eq. (2.4).

A. Stationary solution

For a confining external force independent of time, we
obtain a stationary solution for a sufficiently long time. Thus,
by imposing ∂P/∂t = 0 in Eq. (2.4), one verifies that

P (x,v) = A exp

{
− 2α

�

[
mv2

2
+ V (x)

]}
, (2.9)

where V (x) = − ∫ x

0 F (x ′)dx ′ and A is a normalization factor.
Analogously, for the two particular cases above [Eqs. (2.6)
and (2.8)], we have, respectively,

P (x) = A′ exp

[
−2α

�
V (x)

]
(2.10)

and

P (v) = A′′ exp

(
−αm

�
v2

)
, (2.11)

where, like in Eq. (2.9), A′, and A′′ are normalization
factors. One should mention that the stationary distributions
of Eq. (2.10) and Eq. (2.11) may be found also by integrating
Eq. (2.9) over v, or x, respectively, leading to the above reduced
distributions.

B. Time-dependent solution

For completeness, we write below the time-dependent
solution of Eq. (2.4) as usually found in standard books
(see, e.g., Refs. [19,38]), expressed in terms of the following
Gaussian ansatz:

P (�x,t) = 1

Z(t)
exp{−[�x − �x0i(t)]G

−1(t)[�x − �x0i(t)]}, (2.12)
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where Z(t), �x0i(t), and G−1(t) are determined by imposing
P (�x,t) to be a solution. In the present case, G(t) corresponds
to a 2 × 2 Green-function matrix, which depends on the
coefficients of Eq. (2.4). It should be mentioned that the ansatz
above is useful when Fx is linear on one of the variables, x or v

(or in both variables). As expected, the above time-dependent
solution recovers the stationary solution of Eq. (2.9) in the
long-time limit.

In the following sections we will investigate a NLKE
associated with nonextensive statistical mechanics, for which
the stationary-state and time-dependent solutions discussed
above should be recovered as particular limits.

III. NONLINEAR KRAMERS EQUATION

Within the scenario of the nonextensive statistical mechan-
ics, a NLFPE was proposed, being capable of explaining
many interesting physical phenomena related to anomalous
diffusion [7,8]. Essentially, it consists in a modification of
Eq. (2.2) by introducing an exponent in the diffusion term,

∂P (�x,t)

∂t
= 1

2

n∑
i,j=1

�ij

∂2P ν(�x,t)

∂xi∂xj

−
n∑

i=1

∂

∂xi

[fiP (�x,t)],

(3.1)

where ν is a real positive parameter, directly related to the
nonextensive entropic index through q = 2 − ν, i.e., q < 2.
The linear case is recovered in the limit ν → 1, and for ν �= 1
one has a NLFPE. Along the procedure used for obtaining
Eq. (3.1), a generalization of Eq. (2.4) was proposed in
Refs. [11,39],

∂P (x,v,t)

∂t
= �

2m2

∂2P ν(x,v,t)

∂v2

− ∂

∂v

[(
Fv

m
+ Fx

m

)
P (x,v,t)

]

− ∂

∂x
[vP (x,v,t)], (3.2)

which represents the type of NLKE to be studied herein. As far
as we know, the equation above has not been much explored in
the literature, and only its stationary solution has been obtained
so far [11,39]. Equation (3.2) can be derived from a set of
Langevin equations, essentially by following a scheme similar
to one used to derive a NLFPE [42]; in this way, one introduces
the generalized Langevin equations,

m
dv

dt
= Fv + Fx + P (ν−1)/2η,

(3.3)
dx

dt
= v,

where Fv = −dK(v)/dv, Fx = −dV (x)/dx, 〈η(t)〉 = 0, and
〈η(t)η(t ′)〉 = �δ(t − t ′). Considering an approach similar to
those used to obtain the linear Kramers equation [Eq. (2.4)],
one gets also Eq. (3.2).

We emphasize that the potentials V (x) and K(v) may not be
necessarily quadratic, although in order to obtain a stationary
solution in the long-time limit, they should be confining
potentials; hence one may consider more general situations,
e.g., V (x) = γ |x|b1/b1 and K(v) = α|v|b2/b2 (γ,b1,α, and

b2 all positive) [35]. However, the quadratic potentials are
the most commonly used in the literature, for which one
can calculate more easily analytical solutions in some cases;
therefore, whenever necessary to consider an explicit form for
these potentials, we will consider for simplicity the quadratic
ones, K(v) = αv2/2 (i.e., Fv = −αv) and V (x) = γ x2/2 (i.e.,
Fx = −γ x).

Like in the linear case, we can also analyze some particular
limits. First, when mdv/dt 	 αv, one has

dx

dt
= Fx

α
+ P (ν ′−1)/2 η

α
, (3.4)

which yields

∂P (x,t)

∂t
= �

2α2

∂2P ν ′
(x,t)

∂x2
− ∂

∂x

[
Fx

α
P (x,t)

]
, (3.5)

which corresponds essentially to there NLFPE for P (x,t)
proposed in Ref. [7]. Another interesting particular case occurs
in the limit Fx → 0, i.e., the free-particle limit,

dv

dt
= Fv

m
+ P (ν ′′−1)/2 η

m
, (3.6)

leading to a NLFPE for the velocities,

∂P (v,t)

∂t
= �

2m2

∂2P ν ′′
(v,t)

∂v2
− ∂

∂v

[
Fv

m
P (v,t)

]
. (3.7)

It is important to note that the exponents ν, ν ′, and ν ′′,
appearing, respectively, in Eqs. (3.2), (3.5), and (3.7), are not
necessarily equal, since they may describe different regimes
of the anomalous diffusion. In what follows, these aspects will
be discussed in further detail.

A. Stationary-state solutions

In this subsection we analyze stationary-state solutions (for
which ∂P/∂t = 0) of Eqs. (3.2), (3.5), and (3.7), introduced
above. In all these equations there is a diffusion-like contribu-
tion, as well as drift contributions; herein we assume that these
later terms confine the particle to a finite region, such that the
stationary state is reached after a sufficiently long time.

In this case, the stationary state of Eq. (3.5) is given by

dP ν ′
(x)

dx
= 2α

�
FxP (x), (3.8)

whose solution is

P (x) = Ã′ expq ′ [−σ ′V (x)], (3.9)

where q ′ = 2 − ν ′, σ ′ = [2α(Ã′)1−ν ′
]/(ν ′�), and Ã′ is a

normalization constant. Above, we used the q-exponential
definition [5],

expq(w) ≡
{

[1 + (1 − q)w]1/(1−q), if (q − 1)w � 1

0, if (q − 1)w > 1
.

(3.10)

The function above may be written also as expq(w) = [1 +
(1 − q)w]1/(1−q)

+ , where [y]+ = y if y > 0, zero otherwise.
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In a similar way (i.e., in the stationary regime), Eq. (3.7)
leads to

dP ν ′′
(v)

dv
= 2m

�
FvP (v), (3.11)

and, therefore,

P (v) = Ã′′ expq ′′ [−σ ′′K(v)], (3.12)

where q ′′ = 2 − ν ′′, σ ′′ = [2m(Ã′′)1−ν ′′
]/(ν ′′�), and Ã′′ de-

notes a normalization constant. In the above solutions the
potentials V (x) and K(v) represent conveniently chosen
potentials, such as to yield a stationary-state state in the
long-time limit.

Now, for the NLKE of Eq. (3.2), we have

�

2m2

∂2P ν(x,v)

∂v2
− ∂

∂v

[(
Fv

m
+ Fx

m

)
P (x,v)

]

− ∂

∂x
[vP (x,v)] = 0, (3.13)

which yields

P (x,v) = Ã expq

{
− σ

[
K(v)

α
+ V (x)

m

]}
, (3.14)

with q = 2 − ν, σ = [2αm(Ã)1−ν]/(ν�), and Ã being a
normalization constant. Comparing this solution above with
Eq. (2.9), one notices that the above stationary distribution
presents a similar form, although expressed in terms of a
q exponential of both potentials. The distribution above is
represented in Fig. 1 in terms of conveniently rescaled dimen-
sionless variables for both V (x) and K(v) harmonic potentials
and typical values of q. As expected, these distributions are
characterized by a compact support for q < 1 and infinite
support for q > 1.

FIG. 1. (Color online) The stationary probability distribution of
Eq. (3.14) is exhibited for typical values of q: (a) q = 0, (b)
q = 0.6, (c) q = 1.1, and (d) q = 1.9. The potentials used were the
harmonic ones, V (x) = γ x2/2 and K(v) = αv2/2, whereas P̃ , x̃, and
ṽ represent conveniently rescaled dimensionless variables.

One expects the stationary distribution of Eq. (3.14) to yield
Eqs. (3.9) and (3.12) as reduced distributions. Now, in order to
perform the integrals analytically, we will consider harmonic
potentials in each case. Considering K(v) = αv2/2, one may
integrate Eq. (3.14) over v to obtain

P (x) =
∫ ∞

−∞
P (x,v)dv

= [1 − (1 − q)σV (x)][1/(1−q)]+1/2
+∫ ∞

−∞[1 − (1 − q)σV (x)][1/(1−q)]+1/2
+ dx

. (3.15)

For this reduced distribution to recover exactly that
one presented in Eq. (3.9), namely P (x) = Ã′[1 − (1 −
q ′)σ ′V (x)]1/(1−q ′)

+ , it is necessary that

q ′ = 1 + q

3 − q
and σ ′ =

(
3 − q

2

)
σ. (3.16)

This result indicates that q and σ change when one carries
an integration over one of the variables; moreover, one notices
that only for q = 1 is that such changes do not occur.

In a similar way, considering V (x) = γ x2/2, one may
integrate Eq. (3.14) over x to obtain

P (v) =
∫ ∞

−∞
P (x,v)dx

= [1 − (1 − q)σK(v)][1/(1−q)]+1/2
+∫ ∞

−∞[1 − (1 − q)σK(v)][1/(1−q)]+1/2
+ dv

, (3.17)

where, again, for this reduced distribution to represent exactly
the one presented in Eq. (3.12), namely P (v) = Ã′′[1 − (1 −
q ′′)σ ′′K(v)]1/(1−q ′′)

+ , one needs to impose relations involving
(q ′′,σ ′′) and (q,σ ) that are similar to those of Eq. (3.16).

We conclude that, for parabolic potentials in both variables
x and v, one has similar reduced distributions, characterized
by the same changes in q and σ . This result will be referred
to in Sec. IV, where we discuss the motion of Hydra cells in
a two-dimensional cell aggregate; the theoretical estimate of
the anomalous-diffusion exponent will be compared with the
corresponding experimental value.

B. Time-dependent solution

Now let us address the time-dependent case; similarly to
the proposal of Eq. (2.12), it is natural to consider

P (�x,t) = 1

Z(t)
expq{−[�x − �x0i(t)]G

−1(t)[�x − �x0i(t)]},
(3.18)

as an ansatz for the nonlinear Kramers equation, where Z(t),
�x0i(t), and G−1(t) are determined by imposing the above
P (�x,t) to be a solution of Eq. (3.2).

As a check, we apply the ansatz of Eq. (3.18) for the
time-dependent particular cases in Eqs. (3.5) and (3.7), which
are essentially equivalent equations if one considers the
identifications x ↔ v. Doing this for Eq. (3.7) with Fv = −αv,
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one obtains

v0(t) = v0(0) exp

(
−αt

m

)
, (3.19)

Z(t)G(t)−1/2 = const., (3.20)

G(t) = G(0)

(
exp

[
−(1 + ν ′′)

αt

m

]
− �ν ′′Z(0)1−ν ′′

mαG(0)

×
{

exp

[
−(1 + ν ′′)

αt

m

]
− 1

})2/(1+ν ′′)

. (3.21)

From Eq. (3.19) one notices that v0(t) decays exponentially
and does not depend on q; moreover, G(t) and Z(t) reduce
to constants in the long-time limit, as expected, in such way
to recover the stationary solution in Eq. (3.12). Similar results
follow by applying the ansatz above for Eq. (3.5) with Fx =
−γ x, from which one obtains the time-dependent solution of
Refs. [7,8] [cf. Eq. (3.9)].

Herein we shall discuss two cases where the ansatz of
Eq. (3.18) is applied for the NLKE of Eq. (3.2), involving the
joint probability distribution P (x,v,t), defined for an entropic
index q < 2. In the first case we consider the external force
Fx = 0 and Fv = −αv, enabling us to verify

dx0

dt
= v0,

(3.22)
dv0

dt
= − α

m
v0,

and

dG11

dt
= 2G12,

dG12

dt
= G22 − α

m
G12,

(3.23)
dG22

dt
= −2α

m
G22 + 2(2 − q)

�

m2
Zq−1,

1

Z

dZ

dt
= (2 − q)

�

m2
Zq−1 G11

det G
− α

m
.

In the second, we use an external harmonic force Fx =
−γ x and Fv = −αv, which leads to the following system of
equations:

dx0

dt
= v0,

(3.24)
dv0

dt
= − α

m
v0 − γ

m
x0,

and

dG11

dt
= 2G12,

dG12

dt
= G22 − α

m
G12 − γ

m
G11,

(3.25)
dG22

dt
= −2α

m
G22 − 2γ

m
G12 + 2(2 − q)

�

m2
Zq−1,

1

Z

dZ

dt
= (2 − q)

�

m2
Zq−1 G11

det G
− α

m
.

In both cases above, due the normalization requirement, the
time-dependent coefficients are related by

Z(t)(det G)−1/2 = (2 − q), (3.26)

where 〈f (x,v)〉 = ∫
f (x,v)P (x,v,t)dxdv. Using this defini-

tion for average values, one verifies that

〈x〉 = x0, 〈v〉 = v0, (3.27)

and

〈(xi − 〈xi〉)(xj − 〈xj 〉)〉 = 1

2(3 − 2q)
Gij . (3.28)

Thus, these equations yield an interpretation for x0, v0, and
Gij in terms of the mean values of the position, velocity, and
fluctuations.

The solutions of Eqs. (3.22) are given by

x0(t) = x0(0) + mv0(0)

α

[
1 − exp

(
−αt

m

)]
,

(3.29)

v0(t) = v0(0) exp

(
−αt

m

)
.

On the other hand, the solutions of Eqs. (3.24) are precisely
the well-known position and velocity for a damped harmonic
oscillator. As pointed out, these solutions refer to the mean
position and velocity described by Eq. (3.18).

The sets of Eqs. (3.23) and (3.25) provide information about
the dispersion of the packet given by Eq. (3.18). One sees that
in the case q = 1 these equations decouple, becoming much
simpler; otherwise, they represent a set of coupled equations
that do not present simple solutions. However, below we
investigate the large-time regime, which yields some intuition
about the problem.

C. Large-time limit solutions

Numerical investigations of Eqs. (3.25) indicate that the
matrix components Gij (t) become constant for large t ; this
fact is consistent with the existence of the stationary solution
of Eq. (3.14). On the other hand, numerical investigations of
Eqs. (3.23) suggest an asymptotic power-law behavior for the
matrix components Gij (t); therefore, we reduce our analytical
investigation of Eqs. (3.23) in the limit t � 1 by using

G11(t) = B11t
σ11,

G12(t) = B12t
σ12,

(3.30)
G22(t) = B22t

σ22,

Z(t) = Btσ .

We note that the matrix G is symmetric, so G12 = G21,
thus reducing the number of equations; moreover, one has
the relation G−1

22 = G11/(det G). Substituting the solutions
proposed in Eq. (3.30) into the set of Eqs. (3.23), we obtain

G11(t) = Bq−1 4�

α2

(2 − q)2

(3 − q)
t (3−q)/(4−2q),

G12(t) = Bq−1 �

α2
(2 − q)t (q−1)/(4−2q),

(3.31)

G22(t) = Bq−1 �

αm
(2 − q)t (q−1)/(4−2q),

Z(t) = Bt1/(4−2q),
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where we made use of the normalization relation of Eq. (3.26).
Since q < 2 in the present analysis, one sees that the
coefficients G12 and G22 increase slower than G11.

D. H-theorem for a limit case

Fokker-Planck equations, both in their linear [19,38]
and nonlinear forms [11,32], can be written as continuity
equations, so the stationary state is found by means of the
assumption

N∑
i=1

∂

∂xi

Ji = 0, (3.32)

where {Ji} represent components of a N -dimensional
probability-current-density vector. Hence, the probability cur-
rent must be constant, and, furthermore, in order to satisfy the
normalization constraint for all times, one can show that it
must be zero at the equilibrium state. In contrast to this, in the
case of the Kramers equation a zero normal component of the
probability current density at the surface does not guarantee a
null current inside the volume. Indeed, one can have circular
and tangent currents, so a stationary state may occur, which
does not necessarily correspond to an equilibrium state. This
happens even in the linear case [38], and, as a consequence, it
is not possible to prove the H-theorem by making use of the
Kramers equation in its general form. Below we present the
procedure used to prove the H-theorem and consider a limit
for which this theorem can be achieved.

The H-theorem for a system subjected to forces Fv =
−dK(v)/dv and Fx = −dV (x)/dx, i.e., under a potential,

 = V (x) + K(v), corresponds to a well-defined sign for the
time derivative of the free-energy functional,

F = U [P ] − θS[P ], (3.33)

where

U [P ] =
∫ ∞

−∞
dx

∫ ∞

−∞
dv[V (x) + K(v)]P (x,v,t), (3.34)

with S[P ] representing an entropic functional and θ a
temperature-like parameter.

Considering the general entropic form

S[P ] =
∫ ∞

−∞
dx

∫ ∞

−∞
dvg[P ]; g[0] = g[1] = 0;

d2g

dP 2
� 0, (3.35)

we can write

dF

dt
=

∫ ∞

−∞
dx

∫ ∞

−∞
dv

{
[V (x) + K(v)] − θ

dg

dP

}
∂P

∂t
.

(3.36)

Substituting the NLKE of Eq. (3.2) for the time
derivative in Eq. (3.36) and noting the physical require-
ments for probability normalization, i.e., P (x,v,t)|x,v→±∞ =
0, (∂P/∂x)|x,v→±∞ = 0, and (∂P/∂v)|x,v→±∞ = 0, we

obtain
dF

dt
=

∫ ∞

−∞
dx

∫ ∞

−∞
dv

[(
− Fv − θ

d2g

dP 2

∂P

∂v

)

×P

m

(
−Fv + νP ν−2 �

2m

∂P

∂v
− Fx

)

+Fv

P

α

(
−Fx − θ

d2g

dP 2

∂P

∂x

)]
. (3.37)

From the equation above one may see that there is no
choice for g[P ] that guarantees a well-defined sign for dF/dt ;
then we conclude that the stationary state of Eq. (3.14) is not
necessarily an equilibrium state. However, if one sets Fx = 0,
Eq. (3.37) can be written as

dF

dt
= −

∫ ∞

−∞
dx

∫ ∞

−∞
dv

[(
−Fv − θ

d2g

dP 2

∂P

∂v

)

×P

m

(
− Fv + νP ν−2 �

2m

∂P

∂v

)]
. (3.38)

Considering −θd2g/dP 2 = ν�P ν−2/(2m), we obtain

dF

dt
= −

∫ ∞

−∞
dx

∫ ∞

−∞
dv

P

m

(
−Fv + νP ν−2 �

2m

∂P

∂v

)2

� 0,

(3.39)

yielding the H-theorem for the NLFPE in Eq. (3.7). The
above choice for the entropic functional g[P ] leads to Tsallis
entropy [3,5,6],

Sν[P ] =
∫ ∞

−∞
dx

∫ ∞

−∞
dvg[P ] = k

∫ ∞

−∞
dx

∫ ∞

−∞
dv

P − P ν

ν − 1
,

(3.40)

where k is a constant with dimensions of entropy.
Following the above approach, a connection between the

NLFPE associated with the probability P (v,t) in Eq. (3.7)
for velocities with nonextensive statistical mechanics can be
shown, reinforcing the one found before by means of its
stationary-state solution [cf. Eq. (3.12)]. Similar connections
were found for the NLFPE associated with the probability
P (x,t) in Eq. (3.5) for positions (see, e.g., Refs. [27,28,30,32]).
The fact that both limit equations, namely Eqs. (3.5) and (3.7),
as well as the stationary-state solution for P (x,v) in Eq. (3.14),
are all related in some way to Tsallis entropy does strongly
suggest an association of the Kramers equation of Eq. (3.2)
with nonextensive statistical mechanics, even though a general
proof of an H-theorem cannot be achieved from this equation.

In the next section we discuss previous measurements in a
biological system, namely the motion of Hydra cells, within
the context of the present NLKE.

IV. THE MOTION OF HYDRA VIRIDISSIMA CELLS

In this section we discuss experimental results related
to the motion of Hydra viridissima cells within the present
theoretical context of a NLKE. Hydra viridissima is a small
organism which presents a cylindrical body with two layers
of cells (the inner one, called the endoderm, and the outer
one, called the ectoderm) and lives in dirty water [40,41].
The experiments described in Ref. [41] analyzed statistical
properties associated with the two-dimensional motion of
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the centers of mass of single endodermal Hydra cells in
two different aggregate types, endodermal and ectodermal.
The velocity distributions for the two components vx and vy

were well adjusted by similar q-Gaussian distributions with
an index q̃ = 1.5 ± 0.05. Moreover, an anomalous diffusion
(i.e., superdiffusive) was found in this two-dimensional space,
characterized by 〈r2(t)〉 ∝ ta with a = 1.23 ± 0.1 [41].

In order to treat this system, we will deal with a two-
dimensional Kramers equation defined for a probability
distribution P (x,y,vx,vy,t) instead of the one-dimensional
case analyzed in the previous sections. Herein, we consider
the following NLKE, which consists in a natural extension of
Eq. (3.2):

∂P

∂t
= �

2m2

(
∂2P ν

∂v2
x

+ ∂2P ν

∂v2
y

)
+ α

(
∂(vxP )

∂vx

+ ∂(vyP )

∂vy

)

− ∂(vxP )

∂x
− ∂(vyP )

∂y
. (4.1)

The equation proposed above is based on the experimental
study of Ref. [41], from which we assume the two important
conditions: (i) No external forces act on the cells, i.e., Fx =
Fy = 0; and (ii) we use the same coefficient and exponent for
both components of the nonlinear terms, since the observed
velocity distributions yielded typically similar behavior for
both components vx and vy . Moreover, we consider an ansatz,
which is essentially an extension of the one used in the
corresponding one-dimensional equation,

P (x,y,vx,vy,t)

= 1

Z(t)
expq

⎧⎨
⎩

1

2

4∑
i=1

4∑
j=1

[xi − xi0(t)]G−1
ij (t)[xj − xj0(t)]

⎫⎬
⎭,

(4.2)

with (x1,x2,x3,x4) ≡ (x,y,vx,vy) and q = 2 − ν.
From the joint probability distribution P (x,y,vx,vy,t) one

can calculate reduced probabilities, as done in Eq. (3.17); for
instance, one has

P (vx,t) =
∫

P (x,y,vx,vy,t)dxdydvy, (4.3)

leading to

P (vx,t) ∝ expq̃{−σ (t)[vx − ṽx0(t)]2}. (4.4)

In the distribution above, ṽx0(t) denotes the mean value,
whereas σ (t) represents a quantity related to the standard
deviation of vx at time t . Moreover, the index q̃ results from
three successive applications of Eq. (3.16) (one operation for
each integration), yielding the following relation with the index
q of the ansatz in Eq. (4.2):

q̃ = 3 − q

5 − 3q
. (4.5)

Consistently with our previous study of the one-
dimensional case, σ (t) → const. and ṽx0 → 0 for large t . Ad-
ditionally, due to the symmetry (x,vx) ↔ (y,vy) of Eq. (4.1),
similar results hold for vy .

Based on the experimental estimate [41], q̃ = 1.5 ± 0.05,
for both distributions P (vx,t) and P (vy,t), we will consider

herein q̃ = 3/2 for simplifying the calculations that follow.
From Eq. (4.5) one obtains q = 9/7 as the index associated
with the distribution P (x,y,vx,vy,t), leading to the exponent
of Eq. (4.1), ν = 2 − q = 5/7. Now, let us analyze the mean-
square displacement

〈r2(t)〉 = 〈[x(t) − x0(t)]2〉 + 〈[y(t) − y0(t)]2〉, (4.6)

which, in principle, cannot be calculated analytically, since
we do not know the precise form of P (x,y,vx,vy,t). However,
within the context of the present NLKE, it appears natural to as-
sume that the reduced distribution P (x,t), characterized by an
index q̃ = 3/2, satisfies the NLFPE of Eq. (3.5) with ν ′ = 2 −
q̃ = 1/2. Considering this assumption, a dimensional analysis
leads to 〈[x(t) − x0(t)]2〉 ∝ t2/(3−q̃) [5], with a similar behavior
for the the y-component contribution. Hence, one obtains

〈r2(t)〉 ∝ ta (a = 4/3), (4.7)

which agrees with the experimental value of Ref. [41],
a = 1.23 ± 0.1, within the error bars.

The close agreement of the superdiffusion exponent is quite
astonishing and support the assumptions considered in the
above analysis. Therefore, we have shown that Eq. (4.1),
which represents a two-dimensional extension of the one-
dimensional NLKE studied herein, yields reduced q-Gaussian
distributions for both velocity components vx and vy , as
well as for both position components x and y, which are
consistent with experimental observations for the motion of
Hydra viridissima cells.

V. CONCLUSIONS

We have investigated a nonlinear Kramers equation for a
joint probability distribution P (x,v,t), related to nonextensive
statistical mechanics. The stationary state, as well as time-
dependent solutions, were analyzed analytically. In the time-
dependent case, we have found an associated set of equations
and solved it analytically in the asymptotic regime, showing
that the stationary-state solutions are recovered in the long-
time limit. We have calculated the corresponding nonlinear
Fokker-Planck equations for the marginal probabilities P (x,t)
and P (v,t), which may present, in principle, different degrees
of nonlinearity when compared with the original Kramers
equation. We have also discussed the proof of the H-theorem by
making use of the nonlinear Kramers equation; it is shown that
this proof is not possible in general (even in the linear case).
However, in a particular case of a null position-dependent
force, Fx = −[dV (x)/dx] = 0, this theorem is achieved.

Within this context, an application was considered, where
we have compared our theoretical results with measurements
for the motion of Hydra viridissima cells on the surface
of dirty water. By analyzing reduced probabilities derived
from P (x,y,vx,vy,t), satisfying a two-dimensional nonlinear
Kramers equation that represents an extension of the one-
dimensional equation studied herein, we have shown that
reduced q-Gaussian distributions for both velocity components
vx and vy , as well as those for both position components
x and y, are consistent with the experimental observations.
Particularly, the anomalous-diffusion exponent obtained the-
oretically agrees with the observed one, taking into account
the experimental error bars. The good agreement between
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the present theoretical approach with observations of an
anomalous diffusion in a biological system suggests that the
nonlinear Kramers equation investigated herein should be
useful for describing other complex systems in nature as well.
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